
Universitatea Națională de Știință și Tehnologie Politehnica București

Facultatea de Electronică, Telecomunicații și

Tehnologia Informației

COURSE DESCRIPTION

1. Program identification information
1.1 Higher education
institution National University of Science and Technology Politehnica Bucharest

1.2 Faculty Electronics, Telecommunications and Information Technology
1.3 Department Electronic Devices, Circuits and Architectures

1.4 Domain of studies Electronic Engineering, Telecommunications and Information
Technology

1.5 Cycle of studies Masters
1.6 Programme of studies Advanced Computing in Embedded Systems

2. Date despre disciplină
2.1 Course name (ro)
(en)

Compilatoare
Compilers

2.2 Course Lecturer Conf. Dr. Radu Hobincu
2.3 Instructor for practical activities Conf. Dr. Radu Hobincu
2.4 Year of
studies 2 2.5

Semester I 2.6. Evaluation
type E 2.7 Course regime Ob

2.8 Course type DA 2.9 Course
code UPB.04.M3.O.26-23 2.10 Tipul de

notare Nota

3. Total estimated time (hours per semester for academic activities)

3.1 Number of hours per week 4 Out of which: 3.2
course 2.00 3.3

seminary/laboratory 2

3.4 Total hours in the curricula 56.00 Out of which: 3.5
course 28 3.6

seminary/laboratory 28

Distribution of time: hours
Study according to the manual, course support, bibliography and hand notes
Supplemental documentation (library, electronic access resources, in the field, etc)
Preparation for practical activities, homework, essays, portfolios, etc.

63

Tutoring 0
Examinations 6
Other activities (if any): 0
3.7 Total hours of individual
study 69.00

3.8 Total hours per semester 125
3.9 Number of ECTS credit
points 5

4. Prerequisites (if applicable) (where applicable)

Universitatea Națională de Știință și Tehnologie Politehnica București

Facultatea de Electronică, Telecomunicații și

Tehnologia Informației

4.1 Curriculum
Computer programming
Data Structures and Algorithms
Architecture of Microprocessors

4.2 Results of
learning

Average to good knowledge of at least one programming language between C, C++
and Java, preferably C.

5. Necessary conditions for the optimal development of teaching activities (where applicable)

5.1 Course
Projector, workstation/laptop with Windows operating system (at least 8.1) with at
least 4 GB RAM and processor in the performance range, newer than 2014, to be able
to run a virtual machine.

5.2 Seminary/
Laboratory/Project

Projector, workstations with Linux operating systems (newer than 2014), with at least
8 GB of RAM and processor in the performance range, newer than 2014, one server
in the middle performance class, to coordinate the infrastructure.

6. General objective (Reffering to the teachers' intentions for students and to what the students will be
thought during the course. It offers an idea on the position of course in the scientific domain, as well as the
role it has for the study programme. The course topics, the justification of including the course in the
currcula of the study programme, etc. will be described in a general manner)

Acquiring knowledge specific to the development and implementation of a compiler.

7. Competences (Proven capacity to use knowledge, aptitudes and personal, social and/or methodological
abilities in work or study situations and for personal and proffesional growth. They refflect the empolyers
requirements.)

Specific Competences The student will understand how a compiler works and be able to design and
implement a compiler for a new or existing processor architecture.

Transversal (General)
Competences

The student will gain knowledge about optimizing software applications by
exploiting the functionalities that a compiler provides.

8. Learning outcomes (Synthetic descriptions for what a student will be capable of doing or showing at the
completion of a course. The learning outcomes reflect the student's acomplishments and to a lesser extent
the teachers' intentions. The learning outcomes inform the students of what is expected from them with
respect to performance and to obtain the desired grades and ECTS points. They are defined in concise
terms, using verbs similar to the examples below and indicate what will be required for evaluation. The
learning outcomes will be formulated so that the correlation with the competences defined in section 7 is
highlighted.)

The result of knowledge aquisition through learning. The knowledge represents the totality of facts,
priciples, theories and practices for a given work or study field. They can be theoretical and/or
factual.

Knowing the structure of a compiler
Knowledge of the implementation of each component in a compiler architecture
Knowledge of optimization techniques that a compiler routinely uses
Gaining knowledge about using a compiler effectively

K
no

w
le

dg
e

Universitatea Națională de Știință și Tehnologie Politehnica București

Facultatea de Electronică, Telecomunicații și

Tehnologia Informației

The capacity to apply the knowledge and use the know-how for completing tasks and solving
problems. The skills are described as being cognitive (requiring the use of logical, intuitive and
creative thinking) or practical (implying manual dexterity and the use of methods, materials, tools
and intrumentation).
The master's student will be able to write a backend for a new processor for one of the compilers
used in practice (GCC or LLVM).

The student's capacity to autonomously and responsably apply their knowledge and skills.
-

9. Teaching techniques (Student centric techniques will be considered. The means for students to
participate in defining their own study path, the identification of eventual fallbacks and the remedial
measures that will be adopted in those cases will be described.)

The course will be supported by Powerpoint presentations on which to discuss and students to collect notes.

Students will have a lab sheet and the codes needed for the applications as support. Each student will work
individually at a workstation. At the beginning of the laboratory, its objective will be explained as well as the
relationship with the course material.

10. Contents
COURSE

Chapter Content No. hours
1 Microprocessor architectures and instruction sets 2
2 The elements of a programming language, Taxonomies and Paradigms 2
3 Generalities about compilers and an example of the architecture of a compiler 2
4 Lexical and Syntactic Analysis 2
5 Semantic Analysis 2
6 Machine code generation 2
7 Data flow analysis 2
8 Techniques for optimizing the generated code 2
9 Techniques for optimizing the source code of applications 1 2
10 Techniques for optimizing the source code of applications 2 2
11 Description of Just-in-time compilers 2
12 Research directions in the field of design and implementation of a compiler 4
13 Evaluare finală 2

 Total: 28

Sk
ill

s
R

es
po

ns
ab

ili
ty

an
d

au
to

no
m

y

Universitatea Națională de Știință și Tehnologie Politehnica București

Facultatea de Electronică, Telecomunicații și

Tehnologia Informației

Bibliography:

1. Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman, “Compilers – Principles, Techniques and Tools”,
Ullman Publisher, ISBN 0321486811

2. Steven Muchnick, “Advanced Compiler Design and Implementation”, Morgan Kaufman Publishers,
1997, ISBN 0321486811

3. Randy Allen, Ken Kennedy, “Optimizing Compilers for Modern Architectures”, Morgan Kaufman
Publishers, 2001, ISBN 1-55860-286-0

4. John L. Hennessy, David A. Patterson, “Computer Architecture: A Quantitative Approach”, Morgan
Kaufmann; 4 edition (September 27, 2006), ISBN: 0123704901

LABORATORY
Crt. no. Content No. hours

1 Analysis of the use of a processor's resources and the assembly code 2

2 Experiments to analyze the performance of a programming language and the
default compiler 2

3 Data structures and algorithms used in the implementation of compilers 2
4 Implementation of lexical and syntactic analysis 2
5 Implementation of semantic analysis 2
6 Generating machine code for a simple processor 2
7 Implementation of the data flow analysis step 2
8 Implementation of techniques to optimize the generated code 2
9 Experiment with a program's build options 2
10 Examples of source code optimization techniques 1 2
11 Examples of source code optimization techniques 2 2
12 Analysis of just-in-time compilers 2
13 Recapitulation and Evaluation 4

 Total: 28
Bibliography:

1. Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman, “Compilers – Principles, Techniques and Tools”,
Ullman Publisher, ISBN 0321486811

2. John L. Hennessy, David A. Patterson, “Computer Architecture: A Quantitative Approach”, Morgan
Kaufmann; 4 edition (September 27, 2006), ISBN: 0123704901

3. Documentație Intel vTune Amplifier (https://software.intel.com/en-us/intel-vtune-amplifier-xe-
support/documentation)

11. Evaluation

Activity type 11.1 Evaluation criteria 11.2 Evaluation
methods

11.3
Percentage of
final grade

Universitatea Națională de Știință și Tehnologie Politehnica București

Facultatea de Electronică, Telecomunicații și

Tehnologia Informației

11.4 Course
Good understanding of the
theoretical notions presented in the
course will be pursued.

Written exam 35%

11.5
Seminary/laboratory/project

A good understanding of the
application of the knowledge
presented in the course and during
the labs will be sought.

Project,
colloquium,
evaluations along
the way

65%

11.6 Passing conditions
The student will have to obtain a minimum of 50% of the total score (course and laboratory), at the end of
the evaluation. There are no conditions for obtaining a minimum of 50% of the score for each activity
(course or laboratory).

12. Corroborate the content of the course with the expectations of representatives of employers and
representative professional associations in the field of the program, as well as with the current state of
knowledge in the scientific field approached and practices in higher education institutions in the
European Higher Education Area (EHEA)

The course covers a field very important to both the scientific and industrial communities: the generation of
efficient machine code, using a compiler, from high-level description. The task of compilers at this moment
is becoming more and more difficult as hybrid, parallel and reconfigurable systems become more often
present in electronic devices. The course thus allows students to understand and use modern computing
systems.

Date Course lecturer Instructor(s) for practical activities

11.10.2024 Conf. Dr. Radu Hobincu Conf. Dr. Radu Hobincu

Date of department approval Head of department

31.10.2024 Prof. Dr. Claudius DAN

Date of approval in the Faculty Council Dean

01.11.2024 Prof. Dr. Mihnea Udrea

